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ABSTRACT

Studying the evolutionary history of life’s molecules - DNA, RNA, and protein - reveals nature-based
solutions to real-world problems. We discuss an approach to applied molecular evolution that is
well-known within the field but may be unfamiliar to a wider audience. Using a case study at the
intersection of molecular evolution and medicine, we introduce the fundamental concepts of orthology
and paralogy. We also explain a practical entry point to molecular evolution named STORI: Selectable
Taxon Ortholog Retrieval Iteratively. STORI is a machine learning algorithm designed to clear a bottleneck
that researchers encounter when studying evolution.

Availability. Existing source code is available for download from GitHub (https://github.
com/jgstern/STORI_singlenode).
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INTRODUCTION
In 2013, sickle-cell anemia killed more than 56,000 people [4]. This genetic disorder occurs when
someone has a mutation in their beta-hemoglobin gene [6]. This gene is the DNA blueprint for actual
beta-hemoglobin proteins: subcellular, nanometer-scale molecular machines made of yet smaller building
blocks known as amino acids. Like a jeweler making necklaces from 20 different types of bead, life uses
20 different types of amino acid to build proteins. A single cell contains millions of proteins [38], although
many of them share the same sequence of amino acids and thus have the same function. Protein functions
include maintaining DNA, sending signals across the nervous system, and in the case of hemoglobin,
transporting oxygen from lungs to tissues.

Using the evolution and biochemistry of hemoglobin as a case study, we introduce orthology and
paralogy as principles that are scientifically interesting and practically relevant. We also explain a practical
entry point to molecular evolution named STORI: Selectable Taxon Ortholog Retrieval Iteratively. STORI
is a machine learning algorithm designed to clear a bottleneck that researchers encounter when studying
evolution.

THE BIOCHEMISTRY OF SICKLE-CELL ANEMIA
Below are the amino acid sequences comprising normal human beta-hemoglobin protein, and its sickling
variant. Protein sequences such as these use a 20-letter alphabet to represent which of the 20 possible
amino acids presents at a position along the protein chain. We can describe every protein with a sequence
of letters.

>gi|229752| Human hemoglobin subunit beta
VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVA
NALAHKYH

>gi|40889142| Human sickle-cell hemoglobin S
VHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVA
NALAHKYH

Naturally-occurring hemoglobin is not a straight chain of amino acids. Amino acids interact with
each other and their environment, causing the chain to fold. Some amino acids attract water, and others
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repel water. Some carry a positive charge; others a negative charge. The colossal range of possible protein
behaviors results from the variety of available amino acids and their myriad possible orderings.

Figure 1. Physical differences between normal blood and that of someone experiencing a sickle-cell
crisis. The right-side person’s hand has normal blood, so even when oxygen is low, their red blood cells
(RBCs) are flexible and shaped like shrink-wrapped, vacuum-sealed, stale doughnuts. The other hand
belongs to someone having a sickle-cell crisis, caused by RBCs with sharp corners that rigidified in
response to low-oxygen conditions. Wide-field digital interferometry thickness profiles (first column,
bottom half) and transmission electron micrographs (second column) of single RBCs show the pointy
shape and internal structure that RBCs develop when they sickle. More detailed electron micrographs of
the internal structure (second column, top image) suggest that when sickling occurs, hemoglobin
tetramers organize into double-stranded, helical multimers (third column, top). These double-strands
seem to assemble into groups of seven, resulting in 14-stranded fibers [53] (third column, top). X-ray
crystallography confirms that double-strands are the keystone of hemoglobin fiber formation [23].
Models of the atomic coordinates responsible for the crystallography data show double-strand assembly
depends on a valine amino acid from a ”donor” tetramer fitting between two other amino acids from a
”receiver” tetramer [42] (fourth column, top). Normal hemoglobin has a glutamate instead of a valine at
this position, which is too big and hydrophilic to bind any receiver (fourth column, bottom). The 3D
molecular visualizations in this figure show the sixth residue of beta subunits in light green, hemes of the
subject tetramer in dark green, and surrounding tetramers in cyan. The four subunits of the subject
tetramer are dark and light purple for the two betas and dark and light copper for the two alphas. We
generated these 3D visualizations using the UCSF Chimera software [49], Adobe Photoshop, and Protein
Databank (PDB) files 2HBS and 2HHB. These PDB files resulted, respectively, from [23] and [14].
Image credits: Hands modified from ”friends” (© SuperFantastic, 2007) under CC BY 2.0. Wide-field
digital interferometry thickness profiles of RBCs (© Shaked et al. 2011) are reprinted under CC BY 3.0
from their original publication in the Journal of Biomedical Optics [57] (doi:10.1117/1.3556717). Sickled
and normal RBCs (© Döbler and Bertles 1968) are reprinted under CC BY-NC-SA 3.0 from their original
publication in The Journal of Experimental Medicine [12] (doi:10.1084/jem.127.4.711). Detailed
hemoglobin fiber micrograph (© Rodgers et al. 1987) reprinted with permission from the authors from
their original publication in Proceedings of the National Academy of Sciences [53]
(doi:10.1073/pnas.84.17.6157). Profile of a person’s eyes (© Judith Gallant 2015) used under CC
BY-NC-SA 3.0.

Little changes can make a big difference. With the exception of the sixth residue, highlighted in
yellow, the above two sequences are identical. In normal human beta-hemoglobin, the sixth amino acid is
glutamate (E). In human sickle-cell beta, the sixth amino acid is valine (V). Glutamate attracts water, and
valine repels water. Valine is also smaller than glutamate. Although these two protein sequences are over
99% identical, a single substitution has significant downstream consequences.

Sickling hemoglobins polymerize (aggregate, or stick together) when the concentration of oxygen
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in red blood cells falls below the normal range - during intense exercise, for instance [15]. Hundreds of
individual hemoglobins, sticking together, form unwieldy hemoglobin fibers that cause their red blood
cell containers to rigidify and develop sharp corners [15]. Sickle-shaped red blood cells clog blood vessels
and cause serious health problems (Fig. 1) [51].

Sometimes protein molecules stick together in unhelpful ways, as above, and sometimes they stick
together in helpful ways. Whether or not they are part of a sickle fiber, hemoglobin molecules form
four-member packs. In adults without sickling beta-hemoglobin, two of the pack members are beta-
hemoglobins and two of the pack members are alpha-hemoglobins [41, 59]. We call each pack a tetramer.

Human hemoglobin efficiently transports oxygen from areas of surplus (lungs) to areas of deficit
(tissues). The transport is efficient because the hemoglobin tetramer has a high oxygen affinity in our
lungs and a low oxygen affinity in our tissues. If the oxygen concentration in a red blood cell decreases,
then the hemoglobin tetramer changes the physical arrangement of its four subunits, which causes the
tetramer to decrease its oxygen affinity, and potentially let go of its oxygen. Conversely, increasing oxygen
concentration makes hemoglobin tetramers oxygen-greedy. Sequence differences between the alpha and
beta subunits are what make these two types of subunit stick together and change into the appropriate
shape for the circumstances [41, 59, 26].

For people with sickle-cell anemia, the tetramers usually do their job, however as we said above, the
E to V substitution in sickling beta-hemoglobins causes hundreds of hemoglobin tetramers to form fibers
when oxygen gets particularly scarce. In healthy individuals, low oxygen does not cause hemoglobin
tetramers to polymerize.

One treatment for sickle-cell anemia is to stimulate production of gamma-hemoglobin, because it
can pinch-hit for defective beta-hemoglobin and reduce polymerization [51]. Human fetuses produce
gamma-hemoglobin, which is only slightly different than the beta-hemoglobin that adults produce. Fetal
blood consists almost entirely of fetal hemoglobin (two alpha and two gamma subunits); blood in people
older than 10 months is almost entirely adult hemoglobin (two alpha and two beta subunits) [52, 43].

The human genome (our ”instruction manual” written in DNA) contains genes for both gamma
and beta, but human red blood cells express these genes as proteins at different stages of a human’s
development. At birth, gamma-hemoglobin production starts a 10-month wind down. However, in a pinch,
doctors prescribe non-infants hydroxyurea. For reasons still being studied [63], hydroxyurea enhances
production of gamma-hemoglobin in adults and children, thereby improving sickle-cell anemia symptoms.

Like protein, DNA is a chain of smaller constituents (nucleotides). Similar to how we can describe a
protein with a sequence of characters chosen from a 20-letter alphabet, we use sequences containing four
possible letters to represent the four possible nucleotides in DNA. When subcellular machines synthesize
a protein, they follow instructions encoded by genes, which are made out of DNA. The properties of
nucleotides make DNA suited to store information, and the properties of amino acids make proteins suited
to perform tasks.

MEDICINE IN AN EVOLUTIONARY CONTEXT
Gamma-hemoglobin is a paralog of beta-hemoglobin, which means that historically, beta and gamma
hemoglobin were exactly the same. These two types of protein, which we’ll refer to as subfamilies, were
once only one type of protein, coded by one gene. According to the latest research, two duplication events
led to contemporary gamma-hemoglobin. First, a proto beta-hemoglobin gene duplicated 220 million
years ago, producing a new beta and a new epsilon gene. Next, this ancestral epsilon gene duplicated 130
million years ago, producing what would become contemporary gamma-hemoglobin and beta-hemoglobin
[45, 44].

Just as gamma-hemoglobin came from ancestral beta- and epsilon-hemoglobin, ancestral beta-
hemoglobin also came from somewhere. Jawed vertebrates have beta hemoglobin, but jawless ver-
tebrates don’t. The jawless vertebrates have proteins with sequences similar to beta, epsilon and gamma
hemoglobin, but not that similar. The model for this discrepancy is that when ancestral vertebrates diversi-
fied (speciated) into the jawed type and the jawless type, 475 million years ago, DNA coding an ancestral
hemoglobin precursor duplicated along the jawed branch of life’s tree but not along the jawless branch
[24]. Where there was previously only one copy of instructions for the ancestral hemoglobin, a duplication
event yielded two copies, but only in jawed vertebrates. One of these genes became alpha-hemoglobin,
and the other became beta-hemoglobin. As a consequence of the historical gene duplication that birthed
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alpha and beta-hemoglobin, in humans these subfamilies must cooperate to carry oxygen through the
blood.

Occasionally, cells make mistakes when replicating their DNA, causing life’s genetic code to accumu-
late mutations. As time passes, dissimilarity (aka diversity) usually grows between DNA in two different
species, or two duplicated genes in the same species [66]. After the initial gene duplication that birthed
ancestral alpha and beta hemoglobin in jawed vertebrates, this particular lineage of vertebrates diversified.
Natural selection and genetic drift evolved [22, 35] the sequences of ancestral beta and alpha hemoglobin
to what they are now: collaborative proteins with complementary functions and similar - but nonidentical
- sequences. Today’s alpha and beta hemoglobins are palimpsests of whatever ancestral gene preceded
their birth.

As we said earlier, after alpha hemoglobin and beta-hemoglobin were born, but before the present day,
another two duplication events occurred. The gene for ancestral beta-hemoglobin duplicated, and then
its daughter epsilon-hemoglobin duplicated again. These events led to today’s gamma-hemoglobin and
beta-hemoglobin. One explanation of these gene duplication events is that they enabled the hemoglobin
family to become more efficient at specific tasks. Alpha/gamma tetramers have a higher oxygen affinity
than alpha/beta tetramers in a situation where a pregnant mother is breathing for two [59].

Because of how evolution unfolded, in humans the gamma sequence and the beta sequence are more
related than the gamma sequence and the alpha sequence. Put another way, gamma and beta diverged more
recently than gamma and alpha. In light of this model, for humans it makes sense that gamma-hemoglobin
can pinch-hit for beta-hemoglobin but alpha-hemoglobin cannot. Tetramers of human alpha-hemoglobins
simply do not assemble [1, 56]. Without either alpha/beta tetramers or alpha/gamma tetramers, a person
cannot live. Using hydroxyurea to artificially boost gamma-hemoglobin in people with sickle-cell anemia
is an example of using a defective protein’s paralog as a pinch-hitter. Studying evolutionary history reveals
nature-based solutions to real-world problems (16).

SEARCHING FOR EVOLUTIONARY CONTEXT WITH ORTHOLOGY RECON-
STRUCTION
Our review of hemoglobin evolution and biochemistry relies on published research. However, biologists
have yet to tell the stories of thousands of subfamilies besides hemoglobin. Here is where ortholog
retrieval comes in.

Sequences can be similar to each other in different ways and to different degrees. If two sequences,
each in a different species, are similar because they “derived from a single ancestral gene in the last
common ancestor of the compared species [29],” then the sequences are orthologs. Alpha-hemoglobin
in monkeys is orthologous to alpha-hemoglobin in humans. If two proteins are similar because a gene
duplication event allowed their sequences to diverge, then they are paralogs. Alpha-hemoglobin in
monkeys is paralogous to beta-hemoglobin in monkeys. Duplication causes paralogs and speciation
causes orthologs.

With some exceptions [7, 64, 28] it is rare to witness speciations and gene duplications in real time.
More often than not, the only evidence of these historical events is from present day organisms that have
too much in common for coincidence and too many differences for biologists to give them the same
name. Replaying the tape of life means finding the most probable historical model given features of
contemporary organisms [18].

Searching for the most plausible model given the data is the keystone of evolutionary reconstruction.
We reconstruct orthology to facilitate other types of reconstruction. Modeling a set of sequences as
orthologous does not specify the order of speciation events leading to the observed sequence diversity.
Rather, orthology conveys that the sequences are different because of speciation, not duplication. Modeling
two subfamilies as paralogous does not specify where in evolutionary history the duplication occurred.
Rather, paralogy conveys that sequences in subfamily A are different from those in subfamily B because
of duplication, not speciation. Having a model for which sequences are orthologs and which sequences
are paralogs makes it easier to reconstruct speciations, ancestral sequences, gene gain, gene loss, and gene
transfer. Researchers have developed several methods for orthology reconstruction [10, 32, 60, 65, 69, 67]
because this step facilitates detailed reconstructions downstream.

We write historical fiction – retrodictions of unwitnessed past events - to explain present-day obser-
vations (10) [40]. Often we use algorithms to build millions of alternative reconstructions, holding on
to the ones under which the likelihood of the data improves, and letting go of the ones under which the
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likelihood worsens [13]. As we iterate through each model, we traverse a rugged terrain of plausibility in
search of the highest ”mountain”.

Finding the highest ”plausibility mountain” (aka the global optimum) can be tricky. However, we
improve our odds of getting there by strategically choosing which data we wish to explain and by sampling
different areas of model space with the right balance between small steps and giant leaps [54].

When we say, “these sequences are orthologs, but those are paralogs” we are proposing a plausible
history given the contemporary protein (or DNA, or RNA) sequence data. Researchers have created many
definitions of plausibility. One popular definition of a plausible orthology is best-hit symmetry.

USING SYMMETRIC BEST-HITS TO REVEAL CLUSTERS OF ORTHOLO-
GOUS GROUPS
A single E. coli bacterium contains about 1000 different protein subfamilies, as does a single V. cholera
bacterium. (Furthermore, each cell contains about one million protein molecules, since a cell produces
each protein subfamily many times.) In other words, each of these two example cells contains roughly
1000 nonredundant sequences. Suppose we choose one sequence from the E. coli, and search through the
V. cholera sequences for the one sequence that is most similar to the E. coli query. This search result is
the best hit, similar to if we entered a query on the Google page and clicked “I’m Feeling Lucky.” Now,
take the V. cholera best hit, and use it to query the E. coli sequences. Is the best hit the same sequence that
we initially chose from E. coli? If yes, then these two sequences are symmetric best hits, and we infer that
they are orthologs. The National Center for Biotechnology Information (NCBI) pioneered this technique
in the 1990s, and used it to build the Clusters of Orthologous Groups (COG) paradigm [60].

COGs help us understand how subfamilies were born. A COG is a set of sequences from different
species. Every sequence in a particular COG must be the symmetric best hit of at least two other sequences
in that COG. When a set of sequences satisfies this condition, most phylogeneticists feel reasonable saying
that the sequences are orthologs (descended from a single gene in the species’ last common ancestor).
Examining COGs for a set of species reveals a phyletic pattern [39] for each subfamily. The phyletic
pattern is the presence or absence of a subfamily (ortholog) in a particular species (lineage). If an ortholog
is present in one lineage but not another, one explanation is that a gene duplication occurred when those
lineages diverged.

To build COGs we first need to know all pairs of symmetric best hits, which means running many
best-hit searches (sometimes hundreds of thousands). We perform the best-hit searches using the Basic
Local Alignment Search Tool (BLAST) software [2]. We choose a sequence, say from the panda, and
we find its’ best hit in the cow database. Then we find its best hit in the human database. Then we find
its best hit in the mouse database. We repeat until we’ve queried each of our organisms (taxa). Then we
choose another sequence from panda and repeat the process. For each sequence in each taxon’s database,
we BLAST it against the remaining databases and record the best hit (1). If we have n taxa represented by
n protein databases, and S sequences per database, then each taxon requires S∗ (n−1) BLAST searches.
The total number of BLAST searches conducted is S∗ (n−1)∗n. Finding all pairs of symmetric best hits
requires time proportional to the square of the number of taxa (2).

When we find symmetric best hits, we take note of them. Notice the metadata (gi|229752|... and
gi|40889142|..., highlighted in green) before beta- and sickling-hemoglobin’s actual amino acid sequences.
The NCBI designed those codes so that each GI number is a unique identifier for a unique record in its
protein sequence database. Using a GI number enables us to refer to a particular protein sequence exactly
and concisely. Using GI numbers, we make a network (graph) of protein sequences and their symmetric
best hits. Nodes are GI numbers (references to protein sequences) and an edge connecting two nodes
means the two sequences are symmetric best hits. If each protein sequence had a LinkedIn account, then
symmetric best hits would be connections. However, sequences from the same organism cannot connect.

TELLING STORIES WITH COGS
A graph by itself does not say anything about the history of protein families. To get closer to the story we
need to build the COGs, and to do this we traverse the graph using a method called EdgeSearch [31]. We
start our first COG with an edge – any edge - and its vertices – the symmetric best-hit relationship between
two orthologs. Then we ask: which vertices in the graph are adjacent to (one hop away from) both of
this edge’s vertices? We add the new adjacent vertices, and their edges with the previous two vertices, to
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our COG. We mark the first edge as “processed”, and move on to the next unprocessed edge in the COG.
We repeat the question: which vertices in the graph are adjacent to both of this edge’s vertices? We add
the answer to our COG, mark the query edge processed, and continue. Eventually our COG will run out
of unprocessed edges and at that point it is complete. Thousands of unbuilt COGs remain (in Bacteria,
hundreds would remain, since bacteria have ~10x fewer gene families than animals). To continue building
COGs, we choose an unprocessed edge and start all over. Eventually we will have examined every edge
in the graph.

Choosing several known sequences for any family of interest, e.g. hemoglobin, we can run a small
number of BLAST searches by hand and fish out different COGs. The COGs tell us the phyletic pattern
of which orthologs are present or absent in which species, and this information contributes to the story of
which genes were duplicated or lost by who and when. We integrate this model with other information
about genomic structure, phenotype, and environmental history, revealing how evolution provides both
causes and solutions to life’s problems.

Like EdgeSearch, other popular methods for predicting ortholog sets require the pre-computation of
a large number of BLAST searches (3). In other words, if we want orthologs, we will probably use a
method that takes ~n2 time. Not everyone has access to that kind of power.

NO ONE LAB SHOULD HAVE ALL THAT POWER
STORI aims to provide an alternative to all-against-all searching, thereby reducing the time-to-orthologs.
Three main characteristics of STORI distinguish it from the COG approach: “some-against-some” rather
than all-against-all, “most-popular best hits” rather than reciprocal best hits, and a quasi-deterministic
rather than deterministic output.

Instead of traversing a pre-computed dataset, STORI begins by accepting from the user a set of ”seed”
protein sequences and an upper limit to the number of different subfamilies (sets of orthologs) it may
retrieve. STORI randomly scatters the seeds into two parallel, independent iterator processes. Each
iterator BLASTs the seeds against taxon databases. Within each iterator, the results of each search become
queries for subsequent searches. Each iterator dynamically assigns sequences to different subfamilies
as the results accumulate. By keeping track of the frequency with which queries from each subfamily
choose a particular sequence as a best hit, STORI assigns each hit to a subfamily. Over the course of a
run, STORI learns [9] which subfamily each sequence belongs to.

Let’s drill down into the flow of one of the two independent STORI iterators, to depict this algorithm
concretely. The iterator begins with seed sequences. The crucial point here is that STORI depends on prior
knowledge supplied by the user. The user must provide at least one seed sequence that is evolutionarily
related to the subfamilies of interest; the closer the better. By default, the seed sequences come from a
random draw from the results pool of a user-initiated keyword search of the natural language annotations
(green highlighted text, above) of every taxon’s protein sequence database. If annotations were perfect,
ortholog retrieval would be trivial because the subfamily name would be present in each annotation.
However, annotations often do not indicate which subfamily a protein is a member of, as in the case of
this frog hemoglobin:
>gi|213982769|ref|NP 001135556.1| uncharacterized protein LOC100216102
[Xenopus (Silurana) tropicalis]

A user interested in the hemoglobin family could provide the expression ”[hH]emoglobin” to
STORI and the program would create a pool of sequences whose annotation contain ”hemoglobin”
or ”Hemoglobin”. This pool could contain thousands of sequences with annotation matching the user
query. However, the size of the pool depends on the completeness of the sequence annotations and the
specificity of the user query. STORI chooses seeds by randomly sampling a fraction of the sequence pool,
and passing the sample to an iterator. The random sampling happens twice; once for each iterator.

When an iterator begins, STORI assigns each seed to its own unique “quasi”-subfamily. The quasi-
subfamilies are not biologically meaningful subfamilies. However, as iteration progresses these quasi-
subfamilies will become plausible predictions of subfamilies (orthologous proteins). At the beginning of
an iteration, STORI chooses a small, user defined number of taxa (usually 4). STORI makes this choice
by sliding a window of user-defined size (usually 4) down a list of all the taxa. At iteration 1, the window
is at the top of the full taxa list, and the window will advance by one list element with each subsequent
iteration. After selecting the small list of taxa, STORI cycles through each quasi-subfamily and BLASTs
any sequences assigned to that subfamily, within the small taxa window, against each taxon in the window.
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STORI parses the BLAST results and assigns any best hits to their parent taxa within the subfamily.
After using BLAST to retrieve best-hits for each quasi-subfamily, STORI identifies best hits assigned to
multiple subfamilies and prunes all but the most popular. After pruning, the small taxa window slides
down the full taxa list by one element.

FOLLOWING THE WHITE RABBIT

For example, suppose the small window contains four taxa: panda, cow, dog and horse (Fig 2A). The
window resides at the first quasi-subfamily, which we will arbitrarily call “M” (Fig 2A, left column).
The only sequence present in the window (GI 301769567) is a seed protein sequence from panda, which
STORI chose based on the user’s natural-language query ”[hH]emoglobin”. The program BLASTs the
panda protein sequence query against the panda, cow, dog, and horse databases. The best hit for the panda
is the query sequence, and the searches against the other three taxa each return a different best hit. The
score for all four sequences increases by one, because each sequence was a best hit once (Fig. 2B, left
column).

Next, the small window slides over to quasi-subfamily “Z” (Fig. 2A, right column) and the equivalent
steps occur. As before, the only available query is a seed from panda (a different sequence than the query
used in “M”, from a different panda protein). BLAST searches yield four best hits, one for each taxon,
and these “Z” sequences have best-hit scores which STORI increments by 1 (Fig. 2B, right column). If
more subfamilies exist, the window slides over to each and repeats this process.

Although STORI is unaware of it, quasi-subfamilies M and Z correspond to mu- and zeta-hemoglobin,
respectively. The BLAST searches that just occurred did an almost perfect job of putting the mu sequences
in M and the zeta sequences in Z. However, horse alpha-hemoglobin got assigned to horse in the M
subfamily, which does not make biological sense (Fig. 2B, left column). Mu and alpha are distinct sets
of orthologs. The two subfamilies are paralogous and are related by a duplication event, but the current
arrangement implies that speciation alone caused an ancestral mu to evolve into horse alpha.

What’s going on here? Why didn’t the BLASTing return a horse mu-hemoglobin sequence? Because
it turns out that the mu sequence does not exist in the horse database. As a result, the search returned
horse alpha, since it is most similar to the query. Probably the database is incomplete, or perhaps a gene
loss event occurred. We would need to do more digging to be confident.

Our sliding window, still at subfamily Z (Fig. 2B, right column), is almost ready to return to the
beginning of the subfamily list and advance one taxon. However, before it does that, STORI attempts to
do some pruning. It checks to make sure that no sequence exists in more than one subfamily at a time (5).
Finding no redundant assignments, the 4-taxon sliding window advances (Fig. 2C).

STORI now considers cow, dog, horse, and opossum (Fig. 2C). Opossum does not yet have any
assigned sequences. The window is at the M subfamily (Fig. 2C, left column). STORI BLASTs cow mu,
dog mu, and horse alpha against each taxon in the window. As the left column of Fig. 2D shows, the score
for cow mu gains 2, but an additional cow sequence, alpha, joins the cow quasi-subfamily M, due to the
horse alpha query against cow. Dog results are analogous to cow’s. The horse alpha increases by 2, and
the horse quasi-subfamily M picks up horse zeta (6). The opossum adds opossum zeta +2 and opossum
alpha +1; like the horse database, the opossum database also lacks a mu sequence. When the window
slides over to subfamily Z (Fig. 2C, right column), each of the three zeta sequence scores increase by 3,
and opossum zeta gets assigned to opossum with a score of 3 (Fig. 2D, right column).

After the window slides over to any other subfamilies (ignored for simplicity) and repeats the sequence
retrieval, STORI enters the pruning step. Opossum zeta is assigned to both the M subfamily and the Z
subfamily, but its score is highest in the Z subfamily (Fig. 2D; 3 > 2). As a result, the STORI iterator
prunes opossum zeta from M (Fig. 2E, left column).

The window slides down by one taxon, and now considers dog, horse, opossum and mouse. Sequence
retrieval and pruning repeat. The window advances one more taxon, and so on, until it reaches the bottom
of the full taxon list. At this point, STORI randomizes the order of the taxa in the list, and takes a
few additional steps explained below. The window returns to the top, and the process repeats until a
user-defined time limit expires, or the iterator stops finding new sequences.
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Figure 2. Illustration of how STORI uses seed sequences, a sliding window, and the concept of
”most-popular best hits” to dynamically assign sequences to subfamilies.

SEARCHING FOR THE MIDDLE PATH
Described above is what each parallel, independent STORI iterator spends most of its time doing. STORI
takes a few additional steps to produce reasonable orthology predictions. These steps occur within each
parallel iterator as well as outside of the iterators. On the one hand, these steps usually prevent capture by
local optima, and on the other, they prevent orthology predictions from careening off to an irrelevant part
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of subfamily space.
Once both iterators have finished, the STORI run controller finds the intersection of the results from

each independent output, and provides the intersection set to each of a new pair of iterators. Rather
than assign each seed sequence to its own quasi-subfamily, as STORI did for the first iterator pair, this
initialization includes the previous iterator pair’s predictions of which sequences are orthologous (members
of the same subfamily). This new pair of parallel, independent iterators may provide similar output at
first, since their inputs were identical. However, each iterator’s full taxa list begins in a randomized
order, which the iterators reshuffle every time their sliding windows reach the ends of their lists. This
randomization causes the iterators to sample different areas of subfamily space.

Periodically, the STORI controller compares the results of the iterators, and assigns the pair a score
reflecting how similar their orthology predictions are to one another. As these independent runs are
executed, compared, and restarted with updated seed subfamilies, the similarity score stabilizes in the
range of 90-100%. When the controller detects this stabilization, it labels the run as converged and stops
further iteration.

Within each iterator, STORI checks for “orphan” (aka pseudo-orthologous) sequences with a score
of 1. This check occurs each time the sliding window reaches the bottom of the full taxa list. When it
identifies an orphan, STORI moves the sequence to a new subfamily. A score of 1 means that only one of
that sequence’s presumed orthologs chose it as a best hit; in this scenario paralogy may be more probable
than orthology.

A particular subfamily’s orthologs may present in only a small fraction of the taxa. In this case, the
“sparsely populated” subfamily will compete for representation with a paralogous “abundant” subfamily
whose orthologs present in a large fraction of the taxa. For example, if mu-hemoglobin only presents in
3/10 taxa, then mu queries may return alpha best hits, which in a subsequent iteration push out the mu
sequences. The pruning step often reassigns alpha to the alpha subfamily, however, this reassignment
only occurs when a taxon’s alpha subfamily is assigned the alpha sequence and its score is higher than
that of the misplaced alpha. Before convergence, we do not expect subfamilies to be fully populated, so
the pruning step does not always make correct reassignments. To prevent abundant subfamilies from
outcompeting sparse subfamilies, STORI can boost the seed sequence scores when initializing the first
pair of iterators. Using a single parameter, the user defines a range for all initial seed scores, specifying
the extent to which the seeds persist for multiple taxa list traversals within the first iteration pair.

After the STORI iterator reassigns orphans to new subfamilies, it decreases the seed scores by the
value of the highest non-seed score, and resets the non-seed scores to 2. This reset enables non-seed
sequences to move between subfamilies in the next taxa list traversal.

Not all sequences with a score of 1 are truly orphans; sometimes BLAST searches yield several
different best hits each scoring 1. In this case, STORI incorrectly decides that a sequence is an orphan
and moves it to a new subfamily. As a result, two or more subfamilies may develop although only one
should exist. To prevent subfamily scattering, a merge step may execute once the sliding window hits
the bottom of the taxa list. This step compares every subfamily with every other subfamily, and merges
all subfamilies above a similarity threshold. To avoid undermining the boosted seed scores, merges only
occur when the seed scores and non-seed scores have similar magnitudes.

After the merge step, each iterator sorts its subfamilies by number of member sequences. If the
number of subfamilies is larger than the maximum allowable subfamilies, then the iterator deletes the
smallest subfamilies until the number of subfamilies does not exceed the maximum allowable.

Using a viewer program, the user can view run results, as well as assign natural language annotation
to each subfamily.

Typically, repeated STORI runs with the same starting conditions produce similar but not identical
(“quasi-deterministic”) results. In contrast, repeated EdgeSearch runs with the same starting conditions
produce identical (deterministic) results [31]. This attribute of STORI seems unsurprising given how
often this method uses randomized conditions.

FUNCTION WITHOUT PURPOSE
Can a creator know with certainty how others will use her creation? We could use a mousetrap as a
paperweight even though it isn’t a paperweight [37]. Bacteria once used the same proteins for two different
functions: locomotion and host-cell manipulation (7). We have hypotheses about how others will use
STORI. And, assuming that no startup plans to fail, 90% of web startup founders have business hypotheses
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that are wrong [36]. Planning is essential, resources are finite, and it is hard to make predictions, especially
about the future. Could obsessing over usefulness, significance, and attainability undermine these qualities
rather than develop them [33]?

In certain situations, STORI is faster and more flexible than methods reliant on all-all sequence
comparison [58]. STORI enables users to swap out any number of taxa without needing to recalculate
symmetric best hits. The accuracy of STORI compares favorably to the accuracy of manual ortholog
retrieval for a specific set of protein subfamilies (the ribosomal proteins) [58].

STORI attempts to provide a general solution to the practical problem of timely ortholog retrieval.
We do not know how general this solution actually is. STORI’s accuracy when retrieving non-ribosomal
subfamilies is unclear. Anecdotally, STORI does a reasonable job with kinases, globins, and tRNA
synthetases. Systematic testing of STORI on a variety of families, taxa sets, and run parameters would
improve the algorithm’s usefulness.

Another shortcoming of STORI is that it does not explicitly resolve orthologous groups – i.e., situations
where a sequence in one species is orthologous to more than one sequence in another species (12). STORI
output is a simple table, with rows for species and columns for subfamilies. As a result, STORI does
not presently resolve co-orthologies. We designed STORI to retrieve co-orthologs (aka lineage-specific
expansions), but not to cluster them as the COG algorithm does. In situations of co-orthology, STORI
needs more testing.

STORI helps clear a bottleneck encountered when studying the evolution of proteins: retrieving
orthologous protein sequences from a custom set of taxa. STORI may be used for exploratory data
analysis, at the beginning of a workflow that culminates with biochemical tests of synthesized proteins
([11] details such a workflow). Intermediate steps could include building phylogenetic trees of STORI
output to refine its orthology and paralogy predictions.

Using proteins, and other subcellular components, biologists are beginning to create purposeful, useful,
and economically significant functions. These creations have no anthropogenic precedent. For example,
researchers created an experimental gout treatment [30], enzymes functional at extreme temperature and
pH [19, 48, 68], and ancestral RNA molecules relevant to the origin of life [34]. Other in vitro work
shows how paralogous ATPase proteins, whose dysfunction may cause osteoporosis, evolved specific and
complementary roles after their parent ancestral gene duplicated [16].

One of the first studies to apply the descent-with-modification paradigm to molecular sequences
used hemoglobin as its case-in-point [47]. In the 50 years since this seminal work, molecular evolution
established that all known life on Earth descended from a last universal common ancestor [5]. This
astounding realization is only part of an incomplete model for the emergence of terrestrial life. Pauling and
Zuckerkandl speculated that all genes descended from a common ancestral gene [47]. Other researchers
have since developed related hypotheses and begun testing them with sequence analysis [27, 17, 55, 3, 61,
62]. Such hypotheses about events three to four billion years ago are difficult if not impossible to test. In
and of itself, the endeavor to test is part of what makes research in molecular evolution fun. Furthermore,
basic research becomes practically useful in the long term [8].

As far as we know, non-anthropogenic proteins cannot have purpose. However, all proteins have
function. On Earth, evolution is four billion years old. Perhaps, without intending to, this enduring process
found solutions that present-day humans will use purposefully. The evolutionary history of functional
diversification is a story worth telling.

STORI is available here: https://github.com/jgstern/STORI_singlenode
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ENDNOTES
1. In practice we do the BLAST searches slightly differently from this description, but the principle
is the same. We use PSI-BLAST to query a single FASTA file containing every sequence from every
taxon against a single BLAST database containing every sequence from every taxon. As per the COGsoft
README, this query should be performed in duplicate: once with low-complexity filtering turned on and
once with it turned off. To the best of our knowledge, -num descriptions and -num alignments flags must
be at least the number of taxa.

2. Not every sequence has a best hit; below a certain alignment score threshold, similarity is
coincidental rather than evolutionary. Moreover, not every best hit is symmetric. Suppose that alpha-
hemoglobin in a jawed vertebrate is related to a globin-like protein in a jawless vertebrate (who doesn’t
have alpha/beta paralogs). However, jawed beta-hemoglobin is also related to jawless globin, and the beta-
hemoglobin/globin sequence alignment has a higher similarity score than the alpha-hemoglobin/globin
alignment. In this scenario, the jawless globin will be the best hit for jawed alpha, but the jawed beta will
be the best hit for the jawless globin.

3. A separate class of methods relies on phylogenetic reconstruction, but we do not know of a way to
automate such approaches.

5. For simplicity we assume that the misplaced alpha does not get reassigned to a third quasi-family
of alpha-hemoglobins.

6. Horse alpha against horse returned horse alpha; dog mu against horse returned horse alpha; and
cow mu against horse returned horse zeta. Depending on the taxa, mu can be most similar to zeta, or most
similar to alpha.

7. More precisely, some flagellar proteins are homologous with some type-III secretion system
proteins [21]. The story is complex and merits further study [46].

10. DNA evolves over time. Since DNA codes for proteins, proteins also evolve. An A to G
substitution occurs more frequently than an A to C substitution (i.e., relative substitution rates depend on
which character is replacing which). Moreover, different positions along the DNA chain have differing
importance to the biological function of the gene product. As a result, the rate at which any mutation
occurs depends on its position along the DNA chain. Important parts of a protein evolve slower than
unimportant parts. Quantifying the similarity between a pair of DNA (or RNA, or protein) sequences
from different species or different paralogs requires us to model how fast the positions are mutating
relative to one another. Moreover, when a mutation does occur at a position, we need to model specifically
which characters of the alphabet were involved; no matter the position, different types of mutation have
different probabilities. In most cases we don’t witness the evolution, so we can’t know the positional rate
heterogeneity, or the relative character substitution rates, or how the evolutionary distance between panda
alpha-hemoglobin and cow alpha-hemoglobin compares to that between panda alpha and human alpha.
All of these unknowns are parameters of our evolutionary model, and we are interested in finding the
parameters under which the data (the aligned molecular sequences descended from a common ancestor)
are most likely.

12. For example, alpha-hemoglobin and theta-hemoglobin in mice are co-orthologs with alpha-
hemoglobin in flamingoes. This relationship exists because the ancestral mouse alpha duplicated to
produce ancestral mouse theta, before the present day but after mice and flamingoes diverged [25]. Alpha
and theta in present-day mice are descendants of alpha and theta from the mouse ancestor. Since the
duplication occurred along the mouse branch, flamingoes inherited only alpha. In the last common
ancestor of flamingo and mouse, only one gene – ancestral alpha – descended and modified into flamingo
alpha, mouse alpha, and mouse theta.

14. We often refer to protein types, classes, or families in the singular. Depending on context,
hemoglobin could mean a single molecule or all hemoglobin-type molecules. Moreover we’ve inten-
tionally chosen the word subfamily rather than family to refer to a set of orthologs. A protein family
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usually encompasses several paralogous subfamilies; e.g. alpha, beta, zeta, and epsilon hemoglobins are
subfamilies of the hemoglobin family. Subfamily is still imprecise, since hemoglobin is a subfamily of
globins and not all hemoglobin sequences are orthologs. The STORI source code uses ’family’ in many
contexts where ’subfamily’ would have been less wrong.

15. Cellular machinery reads DNA three nucleotides at a time, and each triplet corresponds to one
of the 20 amino acids. More precisely, 61 out of the 64 possible nucleotide triplets each codes for one
of the 20 standard amino acids. The other three possible triplets (TAG, TGA, and TAA) tell the cellular
machinery that it has reached the end of the protein. The triplet TAG indicates the beginning of a protein
and also codes for the amino acid methionine. These codes are highly conserved throughout known life
with a few exceptions.

16. However, evolution does not only solve problems; it also creates problems. As a case-in-point,
many healthy people without sickle-cell anemia produce the sickling variant of beta-hemoglobin protein.
These individuals possess the sickle-cell trait, meaning they have one copy of the normal beta-hemoglobin
gene and one copy of the sickling gene. Because people with the sickle-cell trait produce both the
sickling variant and the normal variant, their hemoglobin does not cause them health issues. The sickling
beta-hemoglobin is actually an adaptation to protect people in places where malaria is common; this
variant makes red blood cells inhospitable to the malaria parasite [20, 50]. Evolution solved one problem,
and created another. People with the sickle-cell trait are less susceptible to malaria. However, children
of parents who both carry the sickle-cell trait sometimes inherit the sickling hemoglobin gene from
both parents; since these offspring are incapable of producing any normal beta-hemoglobin, they have
sickle-cell anemia.
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